(3k^2-5k)=(-6+2k^2)

Simple and best practice solution for (3k^2-5k)=(-6+2k^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3k^2-5k)=(-6+2k^2) equation:



(3k^2-5k)=(-6+2k^2)
We move all terms to the left:
(3k^2-5k)-((-6+2k^2))=0
We get rid of parentheses
-((-6+2k^2))+3k^2-5k=0
We calculate terms in parentheses: -((-6+2k^2)), so:
(-6+2k^2)
We get rid of parentheses
2k^2-6
Back to the equation:
-(2k^2-6)
We add all the numbers together, and all the variables
3k^2-5k-(2k^2-6)=0
We get rid of parentheses
3k^2-2k^2-5k+6=0
We add all the numbers together, and all the variables
k^2-5k+6=0
a = 1; b = -5; c = +6;
Δ = b2-4ac
Δ = -52-4·1·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-1}{2*1}=\frac{4}{2} =2 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+1}{2*1}=\frac{6}{2} =3 $

See similar equations:

| 4(-2+7x)-8x=8x+40 | | 4(v-2)-6v=-6 | | -33=27-15x | | k÷5.2+81.9=47.2 | | 4(k+4)=6k+22 | | 3(2g-11)=6g-33 | | 8z-16=7z+21 | | 21/2x=9 | | 2x12x+1=9-10x | | -24g=13 | | 3x^2-26+35=0 | | 4(6-2x)=-6x+24-4x | | ((x-2)^3+8)/x=x^2-6x+12 | | 2=3x+17/4 | | 60+(15+8)w=195 | | X+4+1/2x+x-4=46 | | 7x-10=3(x+1)-14 | | (2n-9/7)=(3-n/4) | | 2(2r-3)=4r-6 | | |m-2|-7=-3 | | 15+.9x-x=8 | | 8=6x-15 | | A(5)=700-18w | | (2n9/7)=(3-n/4) | | 3(3x-1)^2=21 | | X-27=-(27-x) | | 5.5-1x=4.5-1x | | -1/2x+3/2=1/2(3-x) | | 35y+7=3−15y35y+7=3-15y | | 1÷x-3+1÷x-4=1/2 | | 19^(x+8)=10 | | -3x+7(x+5=5x+38 |

Equations solver categories